Content-Boosted Restricted Boltzmann Machine for Recommendation

نویسندگان

  • Yongqi Liu
  • Qiuli Tong
  • Zhao Du
  • Lantao Hu
چکیده

Collaborative filtering and Content-based filtering methods are two famous methods used by recommender systems. Restricted Boltzmann Machine(RBM) model rivals the best collaborative filtering methods, but it focuses on modeling the correlation between item ratings. In this paper, we extend RBM model by incorporating content-based features such as user demograohic information, items categorization and other features. We use Naive Bayes classifier to approximate the missing entries in the user-item rating matrix, and then apply the modified UI-RBM on the denser rating matrix. We present expermental results that show how our approach, Content-boosted Restricted Boltzmann Machine(CB-RBM), performs better than a pure RBM model and other content-boosted collaborative filtering methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discriminative Approach to Topic-Based Citation Recommendation

In this paper, we present a study of a novel problem, i.e. topic-based citation recommendation, which involves recommending papers to be referred to. Traditionally, this problem is usually treated as an engineering issue and dealt with using heuristics. This paper gives a formalization of topic-based citation recommendation and proposes a discriminative approach to this problem. Specifically, i...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...

متن کامل

Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions

Splicing refers to the elimination of non-coding regions in transcribed pre-messenger ribonucleic acid (RNA). Discovering splice sites is an important machine learning task that helps us not only to identify the basic units of genetic heredity but also to understand how different proteins are produced. Existing methods for splicing prediction have produced promising results, but often show limi...

متن کامل

Explainable Restricted Boltzmann Machines for Collaborative Filtering

Most accurate recommender systems are black-box models, hiding the reasoning behind their recommendations. Yet explanations have been shown to increase the user’s trust in the system in addition to providing other benefits such as scrutability, meaning the ability to verify the validity of recommendations. This gap between accuracy and transparency or explainability has generated an interest in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014